Search results for "Molecular electronic structure"
showing 5 items of 5 documents
A new copper(II) chelate complex with tridentate ligand: Synthesis, crystal and molecular electronic structure of aqua-(diethylenetriamine-N, N′, N′′…
2015
Abstract The crystals of a new aqua-(diethylenetriamine-N, N′, N′′)-copper(II) sulfate monohydrate have been synthesized by direct interaction of solid copper(II) sulfate pentahydrate with diethylenetriamine (deta). The crystal structure of [Cu(deta)H2O]SO4⋅H2O (1) has been determined by X-ray diffraction methods at 100 K and characterized using X-ray powder diffraction pattern: space group P 1 ¯ , a = 7.2819(4), b = 8.4669(4), c = 8.7020(3) A, α = 83.590(3), β = 89.620(4), γ = 84.946(4)°, Z = 2. The environment of the Cu(II) atom is a distorted, elongated square pyramid which consists of three nitrogen atoms of the deta molecule and oxygen atom of the water molecule in the basal plane of t…
Nuclear anapole moment interaction in BaF from relativistic coupled-cluster theory
2018
We present high accuracy relativistic coupled cluster calculations of the P-odd interaction coefficient $W_A$ describing the nuclear anapole moment effect on the molecular electronic structure. The molecule under study, BaF, is considered a promising candidate for the measurement of the nuclear anapole moment, and the preparation for the experiment is now underway [Altunas et al., Phys. Rev. Lett. 120, 142501 (2018)]. Influence of various computational parameters (size of the basis set, treatment of relativistic effects, and treatment of electron correlation) on the calculated $W_A$ coefficient is investigated and a recommended value of 147.7 Hz with an estimated uncertainty of 1.5% is prop…
The Dalton quantum chemistry program system
2013
Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree-Fock, Kohn-Sham, multiconfigurational self-consistent-field, MOller-Plesset, confi ...
Improved stability of solid state light emitting electrochemical cells consisting of ruthenium and iridium complexes
2006
ABSTRACTTwo charged organometallic complexes containing bulky hydrophobic ligands based on ruthenium (II) and iridium (III) were synthesized and their performance in solid state light emitting electrochemical cells is described. The complexes were chosen as due to their large ligands a diminished susceptibility towards the formation of destructive complexes during device operation is expected. The LEC device performances reveal the longest living devices reported so far under dc bias. Quantum chemical calculations confirm that the major effect of the bulky diphenylphenanthroline ligands is of steric origin and not related with changes in the molecular electronic structure of the complexes.
Basic Concepts and Methodology
2016
In this chapter, the main concepts relevant for the theoretical study of elementary photochemical processes are briefly reviewed. The notions of vibronic coupling and conical intersection are first introduced. The main basic tools from the molecular electronic structure theory and their use for the exploration of potential energy surfaces are then presented.